dydx | y | ∫ydx |
---|---|---|
1 | x | 12x2+C |
0 | a | ax+C |
1 | x±a | 12x2±ax+C |
a | ax | 12ax2+C |
2x | x2 | 13x3+C |
nxn−1 | xn | 1n+1xn+1+C |
−x−2 | x−1 | logϵx+C |
dudx±dvdx±dwdx | u±v±w | ∫udx±∫vdx±∫wdx |
udvdx+vdudx | uv | No general form known |
vdudx−udvdxv2 | uv | No general form known |
dudx | u | ux−∫xdu+C |
ϵx | ϵx | ϵx+C |
x−1 | logϵx | x(logϵx−1)+C |
0.4343×x−1 | log10x | 0.4343x(logϵx−1)+C |
axlogϵa | ax | axlogϵa+C |
cosx | sinx | −cosx+C |
−sinx | cosx | sinx+C |
sec2x | tanx | −logϵcosx+C |
1√(1−x2) | arcsinx | x·arcsinx+√1−x2+C |
−1√(1−x2) | arccosx | x·arccosx−√1−x2+C |
11+x2 | arctanx | x·arctanx−12logϵ(1+x2)+C |
coshx | sinhx | coshx+C |
sinhx | coshx | sinhx+C |
sech2x | tanhx | logϵcoshx+C |
−1(x+a)2 | 1x+a | logϵ(x+a)+C |
−x(a2+x2)32 | 1√a2+x2 | logϵ(x+√a2+x2)+C |
∓b(a±bx)2 | 1a±bx | ±1blogϵ(a±bx)+C |
−3a2x(a2+x2)52 | a2(a2+x2)32 | x√a2+x2+C |
a·cosax | sinax | −1acosax+C |
−a·sinax | cosax | 1asinax+C |
a·sec2ax | tanax | −1alogϵcosax+C |
sin2x | sin2x | x2−sin2x4+C |
−sin2x | cos2x | x2+sin2x4+C |
n·sinn−1x·cosx | sinnx | −cosxnsinn−1x+n−1n∫sinn−2xdx+C |
−cosxsin2x | 1sinx | logϵtanx2+C |
−sin2xsin4x | 1sin2x | −cotanx+C |
sin2x−cos2xsin2x·cos2x | 1sinx·cosx | logϵtanx+C |
n·sinmx·cosnx+m·sinnx·cosmx | sinmx·sinnx | 12cos(m−n)x−12cos(m+n)x+C |
2a·sin2ax | sin2ax | x2−sin2ax4a+C |
−2a·sin2ax | cos2ax | x2+sin2ax4a+C |